24 research outputs found

    Onset Rivalry: Brief Presentation Isolates an Early Independent Phase of Perceptual Competition

    Get PDF
    When the left and right eyes are simultaneously presented with different images, observers typically report exclusive awareness of only one image. This phenomenon is termed binocular rivalry, reflecting the fact that the dominant image alternates every few seconds in a cycle of perceptual competition that continues indefinitely. Despite the apparent continuity in perceptual switching, we now demonstrate that the initial “onset” period is fundamentally different to all subsequent rivalry epochs. Using brief intermittent presentations, rivalry dominance shows strong biases such that the same target is perceived with each successive stimulus onset. These biases remain consistent within any given location, but vary across the visual field in a distribution that is stable over multiple weeks but highly idiosyncratic across observers. If the presentation exceeds ∌1sec at any location, however, the very different and much more balanced alternations of sustained binocular rivalry become apparent. These powerful onset biases are observed with brief intermittent presentations at a single location or with continual smooth motion of the targets. Periods of adaptation to one of the rivaling targets induced local switches in dominance to the non-adapted target. However, these effects were generally limited to the spatial site of adaptation and had less influence over each subsequent cycle of the target. We conclude that onset rivalry is independent of sustained rivalry and cannot be explained by local regions of monocular dominance or memory of past perceptual history, but rather reflects low-level, spatially localized factors that are stable over periods of weeks. These findings suggest that brief presentation paradigms are inappropriate for their current use in studies of the mechanisms underlying sustained rivalry. However, brief presentations are ideal for investigating early stages of perceptual competition

    The Developing Human Connectome Project Neonatal Data Release

    Get PDF
    The Developing Human Connectome Project has created a large open science resource which provides researchers with data for investigating typical and atypical brain development across the perinatal period. It has collected 1228 multimodal magnetic resonance imaging (MRI) brain datasets from 1173 fetal and/or neonatal participants, together with collateral demographic, clinical, family, neurocognitive and genomic data from 1173 participants, together with collateral demographic, clinical, family, neurocognitive and genomic data. All subjects were studied in utero and/or soon after birth on a single MRI scanner using specially developed scanning sequences which included novel motion-tolerant imaging methods. Imaging data are complemented by rich demographic, clinical, neurodevelopmental, and genomic information. The project is now releasing a large set of neonatal data; fetal data will be described and released separately. This release includes scans from 783 infants of whom: 583 were healthy infants born at term; as well as preterm infants; and infants at high risk of atypical neurocognitive development. Many infants were imaged more than once to provide longitudinal data, and the total number of datasets being released is 887. We now describe the dHCP image acquisition and processing protocols, summarize the available imaging and collateral data, and provide information on how the data can be accessed

    Enhancement patterns of the normal facial nerve on three-dimensional T1W fast spin echo MRI

    No full text
    OBJECTIVES: With increasing neuroimaging applications of contemporary three-dimensional T(1)W fast spin echo (3D T1W FSE) sequences, it was aimed to reappraise the normal patterns of skull base facial nerve gadolinium enhancement. METHODS: Pre- and post-gadolinium 3D T1W fast spin echo imaging studies (n = 64) were retrospectively analysed in patients without suspected facial nerve pathology. Two independent observers scored the signal at each of six skull base facial nerve segments. Wilcoxon signed-rank test was used to compare changes in signal between pre- and post-gadolinium sequences at each location, and how this differed between proprietary sequences or between the pairs of facial nerves. RESULTS: There was significant enhancement at the fundal canalicular (16%), geniculate ganglion (96%), tympanic (45%) and mastoid (38%) facial nerve segments (p < 0.05). Two different proprietary sequences demonstrated similar patterns of enhancement and there was symmetry between the two sides. CONCLUSIONS: There is a differing pattern of normal facial nerve enhancement on contemporary 3D T1W FSE sequences compared to previous studies of 2D T1W SE imaging and fundal canalicular enhancement may be physiological. ADVANCES IN KNOWLEDGE: This is the first study to evaluate patterns of normal facial nerve enhancement using contemporary 3D T1W FSE MRI sequences

    Incidental findings on brain MR imaging of asymptomatic term neonates in the Developing Human Connectome Project

    No full text
    BACKGROUND: Interpretation of incidental findings on term neonatal MRI brain imaging can be challenging as there is a paucity of published normative data on asymptomatic term neonates. Reporting radiologists and clinicians need to be familiar with these incidental findings to avoid over-investigation and misinterpretation particularly in relation to neurodevelopmental outcome. This study aimed to determine the prevalence of incidental findings in a large group of asymptomatic term neonates participating in the Developing Human Connectome Project (dHCP) who were invited for neurodevelopmental assessment at 18 months. METHODS: We retrospectively reviewed MRI brain scans performed on 500 term neonates enrolled in the dHCP study between 2015 and 2019 with normal clinical examination. We reviewed the results of the Bayley Scales of Infant and Toddler Development (Bayley III) applied to participants who attended for neurodevelopmental follow-up at 18 months. Scores considered “delayed” if <70 on language, cognitive or motor scales. FINDINGS: Incidental findings were observed in 47% of term infants. Acute cerebral infarcts were incidentally noted in five neonates (1%). More common incidental findings included punctate white matter lesions (PWMLs) (12%) and caudothalamic subependymal cysts (10%). The most frequent incidental finding was intracranial haemorrhage (25%), particularly subdural haemorrhage (SDH). SDH and PWMLs were more common in infants delivered with ventouse-assistance versus other delivery methods. Neurodevelopmental results were available on 386/500 (77%). 14 infants had a language score < 70 (2 SD below the mean). Of the 386 infants with neurodevelopmental follow up at 18 months, group differences in motor and language scores between infants with and without incidental findings were not significant (p = 0·17 and p = 0·97 respectively). Group differences in cognitive scores at 18 months between infants with (median (interquartile range) -100 (95–105)) and without (100 (95–110)) incidental findings were of small effect size to suggest clinical significance (Cliff's d = 0·15; p<0·05). INTERPRETATION: Incidental findings are relatively common on brain MRI in asymptomatic term neonates, majority are clinically insignificant with normal neurodevelopment at 18 months. FUNDING: This work was supported by the European Research Council under the European Union's Seventh Framework Programme (FP7/20072013/ERC grant agreement no. [319456] dHCP project), by core funding from the Wellcome/EPSRC Centre for Medical Engineering [WT203148/Z/16/Z] and by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St Thomas’ NHS Foundation Trust and King's College London and/or the NIHR Clinical Research Facility. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care

    Evaluation of DISORDER: retrospective image motion correction for volumetric brain MRI in a pediatric setting

    No full text
    BACKGROUND AND PURPOSE: Head motion causes image degradation in brain MR imaging examinations, negatively impacting image quality, especially in pediatric populations. Here, we used a retrospective motion correction technique in children and assessed image quality improvement for 3D MR imaging acquisitions. MATERIALS AND METHODS: We prospectively acquired brain MR imaging at 3T using 3D sequences, T1-weighted MPRAGE, T2-weighted TSE, and FLAIR in 32 unsedated children, including 7 with epilepsy (age range, 2–18 years). We implemented a novel motion correction technique through a modification of k-space data acquisition: Distributed and Incoherent Sample Orders for Reconstruction Deblurring by using Encoding Redundancy (DISORDER). For each participant and technique, we obtained 3 reconstructions as acquired (Aq), after DISORDER motion correction (Di), and Di with additional outlier rejection (DiOut). We analyzed 288 images quantitatively, measuring 2 objective no-reference image quality metrics: gradient entropy (GE) and MPRAGE white matter (WM) homogeneity. As a qualitative metric, we presented blinded and randomized images to 2 expert neuroradiologists who scored them for clinical readability. RESULTS: Both image quality metrics improved after motion correction for all modalities, and improvement correlated with the amount of intrascan motion. Neuroradiologists also considered the motion corrected images as of higher quality (Wilcoxon z = −3.164 for MPRAGE; z = −2.066 for TSE; z = −2.645 for FLAIR; all P < .05). CONCLUSIONS: Retrospective image motion correction with DISORDER increased image quality both from an objective and qualitative perspective. In 75% of sessions, at least 1 sequence was improved by this approach, indicating the benefit of this technique in unsedated children for both clinical and research environments

    Individual Assessment of Perioperative Brain Growth Trajectories in Infants With Congenital Heart Disease: Correlation With Clinical and Surgical Risk Factors

    No full text
    Background Infants with congenital heart disease (CHD) are at risk of neurodevelopmental impairments, which may be associated with impaired brain growth. We characterized how perioperative brain growth in infants with CHD deviates from typical trajectories and assessed the relationship between individualized perioperative brain growth and clinical risk factors. Methods and Results A total of 36 infants with CHD underwent preoperative and postoperative brain magnetic resonance imaging. Regional brain volumes were extracted. Normative volumetric development curves were generated using data from 219 healthy infants. Z‐scores, representing the degree of positive or negative deviation from the normative mean for age and sex, were calculated for regional brain volumes from each infant with CHD before and after surgery. The degree of Z‐score change was correlated with clinical risk factors. Perioperative growth was impaired across the brain, and it was associated with longer postoperative intensive care stay (false discovery rate P<0.05). Higher preoperative creatinine levels were associated with impaired brainstem, caudate nuclei, and right thalamus growth (all false discovery rate P=0.033). Older postnatal age at surgery was associated with impaired brainstem and right lentiform growth (both false discovery rate P=0.042). Longer cardiopulmonary bypass duration was associated with impaired brainstem and right caudate growth (false discovery rate P<0.027). Conclusions Infants with CHD can have impaired brain growth in the immediate postoperative period, the degree of which associates with postoperative intensive care duration. Brainstem growth appears particularly vulnerable to perioperative clinical course, whereas impaired deep gray matter growth was associated with multiple clinical risk factors, possibly reflecting vulnerability of these regions to short‐ and long‐term hypoxic injury
    corecore